
48 The Delphi Magazine Issue 36

Beating The System: A Windows
98 File Association Un-Mangler
by Dave Jewell

For a while now, I’ve been plan-
ning to devote some column

space to the development of a util-
ity which will allow you to set up
the file associations on your
machine and, just as importantly,
give you some way of easily restor-
ing file associations that have been
trampled on by other software. I
refer largely (though by no means
exclusively) to Internet Explorer
and Windows itself.

For some time, Microsoft have
taken the rather narrow view that
the only program in the universe
capable of opening GIF files (for
example) is Internet Explorer.
Every time you install Internet
Explorer onto your system, Micro-
soft thoughtfully modify your file
associations so that clicking a
graphic file will almost always
invoke their web browser. I’ve lost
track of the number of times that
I’ve had to work my way through
the system registry, putting every-
thing back the way it was. Recently,
I was foolish enough to install the
shrink-wrap version of Windows
98. Once again, after the installa-
tion smoke had cleared, I found
that assorted file associations
were again conforming to Micro-
soft’s view of reality, and I was
forced to fire up the ever-faithful
REGEDIT utility, cursing under my
breath as I did so. The real reason
why I was cursing under my
breath, by the way, is because Win-
dows 98 resolutely refuses to rec-
ognise my 56K baud modem, but
that’s another story, and not one
for the faint hearted...

It’s hard to figure out why Micro-
soft do this. If an install routine
detects that Internet Explorer is
already installed, then it’s not
unreasonable to assume that the
file associations are the way they
are because the user wants them
that way. But Microsoft can’t
refrain from imposing their own

world view onto everybody else’s
desktop. I’m a great fan of the
shareware Paint Shop Pro applica-
tion (now up to version 5) and not
only does Paint Shop Pro load and
display graphic files a lot faster
than Internet Explorer, it also does
it a good deal more reliably, not to
put too fine a point on it.

Well, this time round, I finally
snapped, and Windows 98 File
Association UnMangler is the fruit
of my labours. This program will
allow you to take a snapshot of
your file associations and then
restore them at a later date, pref-
erably after each installation of a
Microsoft product! The functional-
ity to do that isn’t included in this
month’s code, but will be added
next month. This time, I’ll intro-
duce the program, explain what it
needs to do with respect to the
structure of the system registry
and describe how this month’s
code works.

An Introduction
To File Associations
In order to modify the file associa-
tions in the registry, we obviously
need to know where this informa-
tion is stored. Under Windows 98,
the system registry now contains a
total of six different master keys or
‘hives’ as they’re often called. You
can see all six hives in Figure 1. The

➤ Figure 1: Under
Windows 98, there
are no less than six
different 'hives' or
master keys in the
system registry.
The total number
of hives may vary
somewhat across
Windows 95,
Windows 98 and
different flavours
of NT.

HKEY_CLASSES_ROOT hive is the one
that we’re interested in, this con-
tains all the file association infor-
mation in addition to all the
COM-based GUID class associa-
tions that we’ve looked at in the
Delphi Meets COM series.

For every known file associa-
tion, there’s an entry directly
under the HKEY_CLASSES_ROOT
master key. The name of this entry
corresponds to the extension of
the file type. Thus, if you use REGE-
DIT to explore the registry, you’ll
find (for example) that there’s a
key with the name:

HKEY_CLASSES_ROOT\.dpr

This key provides the first-level file
association for Delphi project files.
If you look at the value part of the
key, you’ll find that it has a value of
DelphiProject. If we now take this
value and look up the key of the
same name (still directly under the
HKEY_CLASSES_ROOT master key)
then we’ll find the real second-
level, file association information
that relates to .DPR files. It’s tempt-
ing to ask why Microsoft did things
in this slightly convoluted manner.
Why didn’t they just put all the file
association information directly
under the file extension key rather
than going through another level
of registry lookup?

August 1998 The Delphi Magazine 49

The short answer is flexibility.
By implementing things in this
way, it’s possible to have many dif-
ferent file extensions, all of which
reference the same second-level
registry information. A common
example of this is the JPEG
graphics file format. In my system
registry, the file extensions .JPG,
.JPE and .JPEG all have the same
key value of JPEGFILE, and they
therefore all point to the same set
of file association information.
This scheme means that more effi-
cient use is made of the registry,
but equally, it goes without saying
that if we modify the second-level
registry information for one of
these file types then we’re effec-
tively modifying it for all of them.

So what does the second-level
file association information look
like? On the basis that a picture is
worth a thousand words, take a
look at Figure 2 which shows the
hierarchical registry data relating
to the .GIF file extension. As you
can see, there are three sub-keys,
open, print and printto, which
descend from a shell sub-key. For
our purposes, all we’re interested
in is the open branch, since this is
what the Explorer refers to when
you double-click a file. However, if
you wanted, you could extend my
little UnMangler program to oper-
ate on the other two branches as
well. In order to restore the status
quo for GIF files (I’m using this file
type as an example throughout this
discussion, but the same general
comments apply to other file types
as well) it’s necessary to change
the value of the \shell\open\com-
mand key value so that it references
the application you wish to
associate with this file type.

You’ll also notice that there’s a
ddeexec sub-tree containing Appli-
cation, ifexec and topic keys.
These keys correspond to the

DDE-related associations which
you can set up so that (for exam-
ple) an already running application
is notified via DDE that a file has
been opened. If you’re familiar with
Delphi 3, you’ll know that double-
clicking a Delphi-related file from
Windows Explorer while the IDE is
running will start a second
instance of the IDE. Using the DDE
mechanism, this behaviour can be
avoided and in fact Inprise seem to
have improved the situation under
Delphi 4. For example, double-click
a project (.DPR) file while Delphi is
running and the IDE will automati-
cally close the current project and
swap over to the newly launched
project.

However, the presence of the
ddeexec sub-tree isn’t always
benign. For example, if you come
along after a Windows 98 or Inter-
net Explorer installation and reset
the \shell\open\command key value
to point to Paint Shop Pro, double-
clicking a GIF file will certainly
launch PSP, but it will also display
an error message like that shown in

➤ Figure 2: This screenshot shows the parts of the registry that relate
to a single file association. This is a relatively simple one, but some
are much more complex: take a look at the entry for .HTM files on a
system that has Internet Explorer installed.

➤ Figure 3: If you don't delete the ddeexec sub-tree which was put
there by Microsoft, applications such as Paint Shop Pro will get
rather upset when you double-click GIF files, for example.

Figure 3. In order to fully restore
the status quo, it’s necessary to
delete the ddeexec sub-tree and
things will then work as in days of
old.

The UnMangler Application
You can see my little UnMangler
application running in Figure 4.
Developing this application gave
me an excuse to play with the
THeaderControl component which
forms part of the Win32 common
controls library. The application
shows a listbox containing all the
file associations found in the
system registry. On the left-hand
side of the listbox you can see the
different file extensions, sorted
alphabetically. On the right-hand
side are the description strings
(also pulled out of the registry, as
we’ll see later) which are used by
the Windows Explorer to fill in the
Type column when looking at a
directory using the Details view.
However, if you click the right-
hand section of the header control,
the right-hand section of the list-
box will change to display the
actual file associations as shown in
Figure 5.

So how does it work? Well, as I
pointed out, the actual code for
saving and restoring a file associa-
tion snapshot isn’t there yet, I’ll be
developing it in next month’s
column. Nevertheless, as you can
see from Listing 1, a fair chunk of

50 The Delphi Magazine Issue 36

➤ Figure 4: Here's the UnMangler application displaying file
description information obtained from the registry. These are the
same file type descriptions that the Explorer uses when displaying a
directory view in 'Details' mode.

➤ Figure 5: And here's the UnMangler again, this time showing the file
associations alongside each file extension. In next month's column,
I'll add the code needed to take a snapshot of this information and
restore it to the registry on demand.

code is needed just to initialise the
listbox contents. This month’s
code will also allow you to totally
obliterate existing file associa-
tions, about which more later:
please read the important caveats
before hitting the Del key!

The biggest routine in Listing 1 is
the FormCreate handler, which
parses the system registry and sets
up a list of file associations. I don’t
know about you, but when working
with the registry I find that the
TRegistry class is generally too
much like hard work because of the
repeated need to keep opening and
closing file keys. I’ve therefore
used the TRegIniFile class for reg-
istry access, which makes the job a
lot more straightforward. Addi-
tionally, this class uses buffered
writes (so-called ‘lazy’ writes) so
you get good performance even
when a large number of registry
changes need to be applied in one
go.

As a quick aside, Delphi 4 pro-
vides a new class called TMemIni-
File which is primarily for
manipulating .INI files (not the
registry) under Windows NT. NT
doesn’t cache .INI file writes which
can result in exceptionally poor
performance where a large number
of file updates are involved. The
TMemIniFile class was developed
to address this problem by

internally caching write opera-
tions. In fact, it’s not a new class at
all, it was internally used by the
Delphi 3 IDE before being made
available for public consumption.

Having created a TRegIniFile
object, the FormCreate code opens
the HKEY_CLASSES_ROOT ‘hive’, cre-
ates a TStringList object and calls
the deeply wonderful ReadSections
routine to read all the top-level key
values from the hive into the string
list. This is a surprisingly fast
operation even when there are a

large number of keys involved. Of
course, at this point many of the
entries in the string list aren’t actu-
ally file extensions: there will be all
sorts of other stuff in there as well
including the second-level key
names. In order to whittle things
down to the required file associa-
tions, the code first checks that an
entry begins with a period [Ahem,
‘full stop’ in Britain... Ed]. If it
doesn’t, then it’s effectively dis-
carded. You might be forgiven for
thinking that another good test
would be to make sure that there
are no more than three characters
following the period, but I’ve
already shown that to be a false
assumption, as in the case of the
.JPEG file extension. In fact, my reg-
istry even contains an entry for
files with the extension ‘.proper-
ties’. Thus, we can’t make any
assumptions about the maximum
length of a file extension.

For each file extension found,
the code checks that there is a cor-
responding second-level entry in
the registry. With .GIF files, for
example, it checks that there’s a
key within the hive called giffile.
If there is, then the default value of
this key contains the human-
readable description of this file
type. We read it into the Desc
string. Finally, the file association
itself (ie, the pathname of the pro-
gram that’s associated with this

August 1998 The Delphi Magazine 51

unit RFMain;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, Registry, ComCtrls;
type
TForm1 = class(TForm)
ListBox1: TListBox;
FileTypesLabel: TLabel;
HeaderControl1: THeaderControl;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure ListBox1DrawItem(Control: TWinControl; Index:
Integer; Rect: TRect; State: TOwnerDrawState);

procedure HeaderControl1SectionTrack(HeaderControl:
THeaderControl; Section: THeaderSection; Width:
Integer; State: TSectionTrackState);

procedure ListBox1DblClick(Sender: TObject);
procedure HeaderControl1SectionClick(HeaderControl:
THeaderControl; Section: THeaderSection);

procedure ListBox1KeyDown(Sender: TObject; var Key:
Word; Shift: TShiftState);

private
SysReg: TRegIniFile; { For accessing system registry }
{ True for descriptions, False for associations }
ShowDesc: Boolean;
{ A little hackette for on-the-fly header resizing }
HeaderZeroSize: Integer;
function GetStr (S: String; Idx: Integer): String;
procedure DeleteItem (const ItemString: String);

public
end;

var
Form1: TForm1;

implementation
{$R *.DFM}
function TForm1.GetStr (S: String; Idx: Integer): String;
var IdxPos: Integer;
begin
while Idx <> 0 do begin
IdxPos := Pos (Chr (9), S);
S := Copy (S, IdxPos + 1, MaxInt);
Dec (Idx);

end;
IdxPos := Pos (Chr (9), S);
if IdxPos = 0 then
IdxPos := MaxInt;

Result := Copy (S, 1, IdxPos - 1);
end;
procedure TForm1.FormCreate(Sender: TObject);
var
Idx: Integer;
Desc, Str, CurSubKeyName: String;
SubKeys, FileExts: TStringList;

begin
{ Open registry and access the hKey_Classes_Root hive }
SysReg := TRegIniFile.Create ('');
SysReg.RootKey := hKey_Classes_Root;
SysReg.OpenKey ('', False);
{ Create temporary stringlist to hold raw subkey names }
SubKeys := TStringList.Create;
{ And another for holding tab-delimited file extensions }
FileExts := TStringList.Create;
try
SysReg.ReadSections (SubKeys);
for Idx := SubKeys.Count - 1 downto 0 do begin
CurSubKeyName := SubKeys [Idx];
if CurSubKeyName [1] = '.' then begin
Str := SysReg.ReadString (CurSubKeyName, '', '');
if Str <> '' then begin
Desc := SysReg.ReadString (Str, '', '');
if Desc <> '' then begin
Str := SysReg.ReadString (Str +
'\shell\open\command', '', '');

if Str <> '' then
FileExts.Add (CurSubKeyName +
Chr(9) + Desc + Chr(9) + Str);

end;
end;

end;
end;
ListBox1.Items.Assign (FileExts);

ListBox1.ItemIndex := 0;
FileTypesLabel.Caption := Format(
'Registered File &Count = %d', [ListBox1.Items.Count]);

finally
SubKeys.Free;
FileExts.Free;

end;
ShowDesc := True;
HeaderZeroSize := HeaderControl1.Sections [0].Width;

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
SysReg.Destroy;

end;
procedure TForm1.ListBox1DrawItem (Control: TWinControl;

Index: Integer; Rect: TRect; State: TOwnerDrawState);
var
Idx: Integer;
ItemString: String;

begin
with ListBox1.Canvas do begin
FillRect (Rect);
if odSelected in State then
Font.Style := Font.Style + [fsBold];

ItemString := ListBox1.Items [Index];
TextOut(Rect.Left+5, Rect.Top, GetStr(ItemString,0));
if ShowDesc then Idx := 1 else Idx := 2;
TextOut(HeaderZeroSize, Rect.Top,
GetStr(ItemString,Idx));

end;
end;
procedure TForm1.HeaderControl1SectionTrack(HeaderControl:
THeaderControl; Section: THeaderSection; Width:
Integer; State: TSectionTrackState);

begin
if State = tsTrackMove then begin
HeaderZeroSize := Width;
ListBox1.Invalidate;

end;
end;
procedure TForm1.HeaderControl1SectionClick (HeaderControl:
THeaderControl; Section: THeaderSection);

begin
if Section = HeaderControl1.Sections [1] then begin
ShowDesc := not ShowDesc;
if ShowDesc then
Section.Text := 'File Description'

else
Section.Text := 'File Association';

ListBox1.Invalidate;
end;

end;
procedure TForm1.DeleteItem (const ItemString: String);
begin
with ListBox1 do begin
Items.Delete (ItemIndex);
ItemIndex := 0;
FileTypesLabel.Caption := Format(
'Registered File &Count = %d',
[ListBox1.Items.Count]);

{ Now delete the registry stuff too }
SysReg.EraseSection(SysReg.ReadString(
GetStr(ItemString, 0), '', ''));

SysReg.EraseSection (GetStr (ItemString, 0));
end;

end;
procedure TForm1.ListBox1KeyDown (Sender: TObject; var Key:
Word; Shift: TShiftState);

var
ItemString: String;

begin
if Key = vk_Delete then with ListBox1 do begin
ItemString := Items [ItemIndex];
if MessageDlg(Format(
'Remove all registry entries for ''%s''?',
[GetStr (ItemString, 0)]), mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
DeleteItem (ItemString);

end;
end;
end.

file type) is read from the
\shell\open\command sub-tree as
previously described. All three
fields (file extension, description
and application pathname) are
added to the FileExts string list,
using tabs to separate each field
from the next.

Finally, once every entry has
been validated in this way, the

resulting string list is assigned to
the Items property of the listbox
and the code exits. Before it does
so, however, it sets up a couple of
member variables, ShowDesc and
HeaderZeroSize for use by the
owner-draw code which displays
the listbox items.

The ListBox1DrawItem code takes
care of drawing individual items in

the listbox. As you can see, I’ve
arranged things so that the high-
lighted entry is displayed in bold
for an extra bit of visual emphasis.
The main part of the code obtains
the file extension part of the string
list item through a call to GetStr
and displays it indented slightly

➤ Listing 1

52 The Delphi Magazine Issue 36

from the left-hand edge of the list-
box. Next, it obtains either the
description information or the
pathname (depending on the value
of the ShowDesc boolean variable)
and displays this at a horizontal
location that’s consistent with the
current setting of the header con-
trol. The GetStr routine is a simple
little function that takes a string
comprising an arbitrary number of
tab-delimited fields and returns
the field indicated by the Idx
parameter. Centralising this logic
in a separate function makes the
ListBox1DrawItem code very much
simpler and more readable than it
would otherwise be.

Fun With Header Controls
From the program description I’ve
given so far, the eagle-eyed will be
asking why I needed to declare a
separate variable HeaderZeroSize
and initialise it in the FormCreate
routine? Why didn’t I just pick up
the current section width from
inside the ListBox1DrawItem
routine?

Well, as I said earlier, part of the
reason for this program was to
serve as an excuse for playing with
the THeaderControl component!
When working with multiple col-
umns of data in a listbox compo-
nent, I like to provide immediate
visual feedback as the user
changes the width of individual
columns, in other words I like the
affected column(s) to move during
the resizing operation. The VCL
‘wrapper’ around the underlying
Windows common control pro-
vides two distinct events that
relate to the resizing of section
widths. These are OnSectionResize
and OnSectionTrack.

The OnSectionResize event
occurs immediately after a section
has been resized and it’s therefore
useless for our purposes. By the
time this event fires, the user has
already released the mouse button
and the section has snapped to its
new width. This leaves us with the
OnSectionTrack event, a much
better bet as it fires every time the
mouse moves during a section
resize operation. Inside the Header-
Control1SectionTrack event han-
dler, I update the HeaderZeroSize

variable according to the passed
Width parameter and then immedi-
ately invalidate the listbox con-
tents, causing it to be redrawn.
With this in view, you can see why I
need the HeaderZeroSizevariable. It
allows us to get the current ‘on-the-
-fly’ value of a section width during
a resize operation.

In a similar fashion the Header-
Control1SectionClick routine
responds to mouse clicks on the
header control. If the section being
clicked is the second section then
the ShowDesc boolean variable is
toggled, the text of the section is
updated according to whether
we’re displaying descriptions or
file associations and, once again,
the listbox contents are
invalidated to force a redraw.

Oops, I Didn’t
Mean To Do That...!
A surprising number of (allegedly)
commercial quality packages leave
junk in the system registry, and
this is as true of file associations as
it is of COM registration, miscella-
neous application settings and so
on. To give just one example, if you
walk into your local branch of W H
Smith’s, you can buy the new
Maplin Electronics catalogue in the
form of a CD ROM. This application
is based around the Fourth Dimen-
sion database engine. When you
uninstall it (‘nuff said!) it leaves
some detritus in the system regis-
try, including file associations for
the file types used by Fourth
Dimension itself.

If you switch the UnMangler
application so as to display file
associations rather than descrip-
tions, it becomes very easy to just
scan through the list and look for
information that’s referencing
directories that no longer exist. If
you wanted to extend my program,
you could obviously add code to
step through the file association
list, specifically looking for refer-
ences to non-existent directories
and highlighting them in some way,
or even automatically deleting
them.

For my own use, I’ve added a
simple delete facility to the UnMan-
gler app. You need to appreciate
that this has got relatively little to

do with file associations, it simply
deletes any reference to a given file
type including the second-level
registry information. Understand
that you use it at your own risk!

The ListBox1KeyDown routine
simply checks for a press of the Del
key, displays a confirmation dialog
asking if you want to delete the
highlighted item and then calls the
DeleteItem routine to delete the
first- and second-level registry
information (all of it!) relating to
this file type. The displayed file
count information is then updated.

You’ll recall that earlier I men-
tioned the possibility of multiple
file extensions mapping to a single
set of second-level file association
information, as in the case of .JPG,
.JPE and .JPEG files. Because of
such possibilities, you need to be
especially careful when deleting
file associations. If what you’re
deleting points to a non-existent
directory, then you can delete the
association with impunity but oth-
erwise, be careful! If you wanted to
write a more sophisticated version
of my UnMangler, then you could
store the second-level key name
(eg giffile) as part of the tab-
delimited data that’s stored in the
main listbox. Then, whenever an
attempt is made to delete a file
association, it would be a simple
matter to scan the list looking for
any other file extensions which
share the same association data.
You could then put up a suitable
warning and optionally delete all
other affected file types at the
same time.

Well, that’s it for this month.
Next time round, I’ll add the code
to take file association snapshots
and then re-impose a snapshot
back on the registry at a later time.
See you then!

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
Dave@HexManiac.com

August 1998 The Delphi Magazine 53

Windows 98: What’s In It For You?
For some time, the Editor has been nagging me to do a piece on the
new features in Windows 98 and NT 5. Although I was initially enthu-
siastic about this idea, my enthusiasm waned somewhat when it
became apparent that there wasn’t really all that much to write
about from a programmer’s perspective. Ok, Windows 98 has got
Active Desktop, USB support and a number of other cute user inter-
face enhancements: I especially like the Quick Launch area on the
Windows taskbar and ability to rearrange Start Menu items by drag-
ging them around. It’s also nice being able to view folders as if they
were web pages and generally apply the same access paradigms to
both the desktop and the internet. Nevertheless, the amount of new
API-level functionality available to programmers is relatively small.
Yes, Windows 98 now has a new 32-bit device driver model, but how
often is this particular feature going to be relevant during ordinary
application development?

It isn’t just me that feels this way by any means. Being a confirmed
anorak, I subscribe to a number of American programmer’s maga-
zines in addition to the excellent publication which you are now read-
ing [This man will go far! Ed]. In the countdown to Windows 95, one
of these, Microsoft Systems Journal, devoted a great deal of space to
all the new programming goodies that were available such as shell
programming with the Explorer, long filename support, how to use
the new common controls, common dialogs and so forth. This time
round, Windows 98 has barely rated a mention.

So where does this leave us? In my opinion, it’s strictly business as
usual. From what I’ve seen of Windows 98 so far, there are relatively
few situations (in terms of day-to-day application development)
where you’re likely to care much about differentiating between Win-
dows 98 and Windows 95. The only real exception to this is the new
multi-monitor support. With Windows 98, it’s possible to plug more
than one display card (each with its own monitor) into your PC and
have the system allocate the logical desktop area across all installed
monitors. This makes it possible (for example) to drag windows from
one monitor and put them on another monitor.

So why would you want to do this? Good question. If multi-monitor
support had been unveiled four or five years ago when we were all
working with 14 inch screens, then there might have been some point
to it. Nowadays, 17 inch screens are pretty much the norm, and 19
inch screens (like the one sat in front of me) are eminently affordable.
With a reasonable resolution (I use 1152 by 864 pixels), screen clutter
really isn’t an issue. Why should I clutter my desktop (the wooden
one, not the Windows one!) in an effort to reduce screen clutter that I
don’t have?

OK, I accept that for some people multi-monitor support is the best
thing since sliced bread and I can certainly appreciate that it’s useful
during debugging. But I reckon that multi-monitor set-ups will
always be the exception rather than the rule, and you’d be daft if you
wrote a mass-market application that depended upon this feature.
The good news, for Delphi 4 programmers, is that multi-monitor sup-
port is now directly accessible through enhancements to the VCL
library. Forms now have a DefaultMonitor property which can be used to
specify which monitor you want the form to appear on, and the
Screen object has a new Monitors array property which can be used to
enumerate all the monitors on a system, enumerate their size,
relative position and so forth. Other than that, happy Delphi
programming!

Dave Jewell

	An Introduction To File Associations
	The UnMangler Application
	Fun With Header Controls
	Oops, I Didn’t Mean To Do That...!
	Windows 98: What’s In It For You?

